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Abstract

This paper presents a new method for the modal frequency response analysis of partially damped structural system with

non-proportional viscous damping. The basic idea is to handle the modal viscous damping matrix by noting that the rank

of the viscous damping matrix is typically very low for problems of interest. Then, the Sherman–Morrison–Woodbury

formula provides a convenient expression for the inverse of equation which includes the low-rank matrix. The new method,

fast frequency response analysis (FFRA) algorithm, dramatically improves the performance of the modal frequency

response analysis compared to conventional methods in industry with the same accuracy.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The frequency response analysis (FRA) for large structures in terms of all of the finite element (FE) degrees
of freedom in the millions has been prohibitive. Instead, industry has mainly used the modal FRA. Some of
the most challenging aspects of performing the modal FRA arise from damping [1,2]. For an undamped
system or a system with proportional viscous damping, the modal frequency response problem becomes
uncoupled, so that it is inexpensive to solve the modal frequency response problem. However, non-
proportional damping, which describes the realistic damping of structures, results in a fully populated
coefficient matrix in the modal formulation [3]. One of the most commonly used types of non-proportional
damping for representing energy dissipation is viscous damping that assumes the existence of dissipative forces
that are a function of velocity.

With non-proportional viscous damping, the coupled modal frequency response problem has been solved
with either direct methods or iterative methods [3]. Although direct methods are the most straightforward and
accurate, they are expensive due to the factorization cost, Oðm3Þ operations [4], where m is the number of
modes used to represent the response and is usually in the thousands for large structures. Iterative methods
have more advantages than direct methods in terms of speed. However, the disadvantages are that the
convergence rate of iterative methods depends on spectral properties of the coefficient matrix, and the cost
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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increases in proportion to the number of right hands [5]. Alternatively, the coupled modal frequency response
problem can be uncoupled with the quadratic eigensolutions [6]. Generally, in order to obtain the quadratic
eigensolutions, one needs to linearize the quadratic eigenvalue problem into a 2m� 2m generalized eigenvalue
problem. This approach, however, is too expensive for large-scale FE models that require more than
thousands of modes to represent the responses. Unfortunately, there are still disadvantages with traditional
methods to solve the modal frequency response problem with many modes, thousands of modes.

This paper presents an efficient algorithm, the fast frequency response analysis (FFRA) algorithm, for
solving the modal frequency response problem with non-proportional viscous damping. The focus of FFRA
algorithm is the partially damped structural system that has a low-rank viscous damping matrix. With most
structures, a relatively small amount of viscous damping mechanism provides a large reduction in stress and
deflection by dissipating energy from the structure. For example, with an automobile suspension, a few shock
absorbers, which are using viscous dampers, are used to control the motion of the springs that support the
vehicle. The FFRA algorithm can dramatically improve the performance of FRA compared to conventional
methods in the industry with the same accuracy.

2. Modal frequency response problem with non-proportional viscous damping

A system of equations for the direct FRA in the FE dimension can be represented as

½�o2M þ ioBþ K �XðoÞ ¼ PðoÞ, (1)

where M, B, and K 2 Rn�n are the FE mass, non-proportional viscous damping, and stiffness matrix,
respectively, and n represents the number of FE degrees of freedom. For excitations PðoÞ 2 Cn�nf , the
frequency responses XðoÞ 2 Cn�nf are calculated at each excitation frequency o by solving a set of complex
linear equations (1), where,where nf is the number of load cases.

The frequency response problem in Eq. (1) is projected onto the space spanned by eigenvectors in F 2 Rn�m

of a partial eigensolution of the generalized eigenvalue problem KF ¼MFL, in which L 2 Rm�m is a
eigenvalue matrix and m is the number of modes obtained up to cutoff frequency ðm5nÞ. By making the
substitution XðoÞ ¼ FZðoÞ and premultiplying by FT, the modal frequency response problem is obtained in
the form

½�o2I þ ioB̄þ L�ZðoÞ ¼ FðoÞ, (2)

where the mass and stiffness matrices are diagonalized as a result of the mode orthogonality and mass
normalization, and FðoÞ ¼ FTPðoÞ 2 Rm�nf . Note that the modal viscous damping matrix B̄ ¼ FTBF 2 Rm�m

is not diagonal. Although there is an enormous reduction in dimension from the original problem in Eq. (1),
Eq. (2) is still expensive for large-scale structures with many modes, thousands of modes, due to Oðm3Þ

operations to factor the coefficient matrix.

3. Fast frequency response analysis algorithm

When viscous damping exists, Eq. (2) can be rewritten as

½DðoÞ þ ioB̄�ZðoÞ ¼ FðoÞ, (3)

where DðoÞ ¼ ð�o2I þ LÞ is a frequency-dependent diagonal matrix.
The new algorithm FFRA for viscous damping handles the modal viscous damping matrix by noting that

the rank of the viscous damping matrix B is typically very low for problems of interest in the automobile
industry. This is because of the small number of viscous damping elements such as shock absorbers and engine
mounts. Conventionally, the rank of matrix can be identified with singular value decomposition (SVD). Since
B is symmetric, the eigenvalue decomposition provides the same results as the SVD method.

First, in order to reduce the cost of eigenvalue decomposition for the modal viscous damping matrix
B̄ ¼ FTBF, the B̄ matrix is decomposed efficiently into

B̄ ¼ FT
b BbFb (4)
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by noting that B is very sparse matrix. The condensed viscous damping matrix Bb 2 R
b�b contains only non-

zero rows and columns of the finite-element matrix B. Fb 2 Rb�m contains rows of F which correspond to non-
zero elements in B. Generally b is much smaller than n since B is very sparse. b is typically tens of degrees of
freedom in automobile structures.

Then, the eigenvalue decomposition for the condensed viscous damping matrix Bb, which is also symmetric,
is performed as

Bb ¼ USUT (5)

in which S 2 Rr�r is the diagonal matrix of singular values, and U 2 Rb�r is orthogonal matrix [4]. The r is the
rank of Bb. Generally rpb is much smaller than m.

By substituting Eq. (5) into Eq. (4), B̄ can be represented in the form

B̄ ¼ FT
b ðUSUTÞFb. (6)

Combining Eq. (3) with Eq. (6) results in

½DðoÞ þ ioŪSŪ
T
�ZðoÞ ¼ FðoÞ, (7)

where Ū ¼ FT
b U 2 Rm�r. Eq. (7) can be rewritten in the form of a diagonal matrix, DðoÞ, plus low rank

matrices, Ū and QðoÞ, in the form

½DðoÞ þ ŪQðoÞŪT
�ZðoÞ ¼ FðoÞ, (8)

where QðoÞ ¼ ioS 2 Cr�r. To solve Eq. (8), instead of factoring the coefficient matrix with Oðm3Þ operations,
the Sherman–Morrison–Woodbury (SMW) formula [4] gives a convenient expression for the inverse of Eq. (8)
as

ZðoÞ ¼ ½Dþ ŪQŪ
T
��1FðoÞ

¼ ½D�1 �D�1ŪQ1=2ðI þQ1=2Ū
T

D�1ŪQ1=2Þ
�1Q1=2Ū

T
D�1�FðoÞ

¼ ½D�1 �D�1W ðI þWTD�1W Þ�1WTD�1�FðoÞ

¼ ½D�1 �D�1WR�1WTD�1�FðoÞ, ð9Þ

where W ¼ ŪQ1=2 2 Cm�r and R ¼ I þWTD�1W 2 Cr�r. The general form of the SMW formula is

ðAþ BCTÞ
�1
¼ A�1 � A�1BðI þ CTA�1BÞ�1CTA�1. (10)

Note that the cost for solving Eq. (9) involves only Oðr3Þ operations to invert R and some matrix
multiplications, which are inexpensive because r is small. In addition, the FFRA algorithm is an efficient
modal frequency response problem reformulation, not an approximation approach.
Table 1

The cost of operations for the FFRA algorithm for non-proportional viscous damping

Step Task Cost

(1.1) Bb ¼ USUT Oðb3Þ

(1.2) Ū ¼ FT
b U Oðm � b � rÞ

for i ¼ 1;nfreq
(2.1) D�1F Oðm � nf Þ

(2.2) W ¼ ŪQ1=2 Oðm � r2Þ

(2.3) WTðD�1FÞ Oðr �m � nf Þ

(2.4) R�1 Oðr3Þ

(2.5) R�1ðWTD�1FÞ Oðr2 � nf Þ

(2.6) W ðR�1WTD�1FÞ Oðm � r � nf Þ

(2.7) D�1ðWR�1WTD�1FÞ Oðm � nf Þ

end
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Table 1 shows the detailed cost of the FFRA algorithm. In step (1.1), the cost of eigenvalue decomposition
for the symmetric Bb is inexpensive because the dimension of matrix Bb is b which is relatively very small
compared to m. At each excitation frequency, the main cost is Oðm � r2Þ operations per load case. So, the
FFRA algorithm results in a dramatic reduction in the cost of operations compared to conventional method
that factors the coefficient matrix at each frequency with Oðm3Þ operations per load case.
4. Numerical examples

As numerical examples, two industry automobile FE models are selected to evaluate the FFRA algorithm.
The performance and accuracy of the FFRA algorithm are compared to those of a commercial FE software
NASTRAN modal solution (SOL 111) [7] and ZSYSV in LAPACK [8], in which the coefficient matrix of a
complex linear system for the partially damped modal frequency response problem is factored at each
frequency. An HP rx5670 with 900MHz Itanium II processor is used for evaluating the performance of the
algorithm.
4.1. Example 1

For the FE model with 114,219 degrees of freedom shown in Fig. 1, 1381 global modes are obtained from
the partial eigensolution. Only two viscous damping elements are used. From the eigenvalue decomposition in
Eq. (5), in which DSYEV in LAPACK [8] is used, the rank of the modal viscous damping matrix is identified
as 4. The modal FRA is performed up to 700Hz. Table 2 shows the analysis time from the FFRA algorithm.
The FFRA algorithm is 37.9 times faster than NASTRAN modal solution (SOL 111). For accuracy
evaluation, the solution of the FFRA algorithm is compared with that of NASTRAN as shown in Fig. 2, in
which both the FFRA and NASTRAN solution yield the same result.
4.2. Example 2

The performance of FFRA algorithm is evaluated for a trim body car FE model, which has 1.8 million
degrees of freedom. The number of load cases is 3. The frequency range of interest is from 1 to 500Hz with a
1Hz increment. The number of global modes is 7570. The rank of modal viscous damping matrix is 4.

Table 3 shows the analysis time of FFRA and ZSYSV in LAPACK. The FFRA algorithm is almost 224
times faster than ZSYSV algorithm. For accuracy evaluation, the solution of the FFRA algorithm is
compared with that of ZSYSV solution. Fig. 3(a) and (b) show the magnitude of the response in the Z

direction at driving point and cross-point. As revealed in the figures, the results from both the FFRA and
Fig. 1. Finite element model with two viscous damping element.
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Table 2

Elapsed time of the modal frequency response analysis for FE model 1

FFRA NASTRAN modal FRA (SOL 111)

Elapsed time 29 s 18min 21 s
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Fig. 2. Comparison of responses from the FFRA and NASTRAN modal solution (SOL 111) for FE model 1.

Table 3

Elapsed time of the modal frequency response analysis for FE model 2

FFRA ZSYSV in LAPACK

Elapsed time 7min 5 s 26 h 30min
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ZSYSV are indistinguishable. The figures and tables show outstanding performance of the FFRA algorithm
with good accuracy for a FE model with partially damped viscous damping.
5. Conclusion

For a partially damped structural system with non-proportional viscous damping, the FFRA algorithm is
developed to solve the modal frequency response problem efficiently. While observing the same accuracy as
the conventional methods, which require Oðm3Þ operations at each frequency, the FFRA algorithm
dramatically improves the performance of the modal frequency response analysis with Oðm � r2Þ operations.

Remarks: Some contents of this paper is submitted for patent approval.
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Fig. 3. Comparison of responses from the FFRA and ZSYSV in LAPACK for FE model 2.
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